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J =35 (G =2+ 2 Ddx = [, ) du = [ fuP)du MIAL* (6)

(iii)

Ide —med —foox—_zd M1A1
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_ — Al
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2. (i) True. B1

m = 1000 B1

If n > 1000, then 1000 < n,so 1000n < n?,i.e. (1000n) < (n?) M1A1 (4)

(ii) False. B1

E.G.Let s, =1 and t,, =2 for n odd,and s, =2 and ¢, =1 for n even. B1
Then Am for whichfor n>m , s, <t,,nor t, < s, M1
So it is not the case that (s,) < (t,), but nor is it the case that (t,) < (s;,,) A1 (4)
(iii) True. B1

(sp) < (t,) means that there exists a positive integer, say m, , for which for n >m, , s, <t,.
El

(t,) < (u,,) means that there exists a positive integer, say m, , for which for n >m, , t, <u, .
El

Then if m = max(m,,m,), B1
forn>m, s, <t, <u,,andso (s,) < (u,) Al (5)
(iv) True. B1
m=4 B1
Assume k? < 2K for some value k > 4. B1
Then (k + 1)2 = (%)2 k2 = (1 +%)2 k2 < (1 +%)2k2 =2Zk2 < 2k? <2 x 2% = 2K+
M1A1
4% =24 B1

so by the principle of mathematical induction, n? < 2™ for n > 4, and thus (n?) < (2"™) A1(7)
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Symmetry about initial line Gl
Two branches G1
Shape and labelling G1(3)
If |r—asec@|=b ,then r—asecf =b or r—asecd =—b
So r=asecf+b or r=asecfd —b M1A1

If secd <0, asecb+b<—-—a+b<0 a a>b and asecl —b<—-a—b<0 asaandb
are both positive, and thus in both cases, r < 0 which is not permitted. B1

If secd >0, asecO+b>a+b>0and asecd —b>a—b>0 givingr>0
so secd > 0 asrequired. Bl (4)

So r =asech *+ b , thus points satisfying (*) lie on a certain conchoid of Nicomedes with A being

the pole (origin), B1
d being b, Bl
and L being the line r = asecé . B1(3)

(ii)

Symmetry about initial line Gl
Two branches G1
Loop, shape and labelling G1



If a < b ,thenthe curve has two branches, r = asec8 + b with secd >0 and r =asecfd + b

with sec8 < 0 , the endpoints of the loop corresponding to sec8 =_?b . B1 (4)
Inthecase a=1 and b=2, secf =_TZ= —2s0 0= i%ﬂ

Area of loop

=2 %f%(sec@ +2)2d8 M1A1

= [sec? 6 + 4sechd +4d6 = [tan 6 + 4In|secd + tan O] + 40]% M1A1
3 3

=4n—(—V3+4In|-2-V3|+Z)=Z + V3 —41n|2+ V3 M1A1 (6)
( | 3 3



4. (i) y=z3+az?+bz+c is continuous.
For z > —oo,y - —o0 andfor z > o,y = oo . B1

So the sketch of this graph must be one of the following:-

alan
TC#_ .

B1

Hence, it must intersect the z axis at least once, and so there is at least one real root of
z34+az?+bz+c=0 B1(3)

(ii) z3+az?+bz+c=(z—2)(z—2)(z—23) M1

Thus a = (—z; — 2z, —23) = =5, Al

(21422423)%—(21%+2,%+232 $1%-58
b:(Z2Z3+Z3Z1+Z1Z2): L gl 2 2 ): 12 2 Al

and,as z;3 +az;?+ bz +c=0,23+az,> +bz, +c=0,z33+az;2 +bz;+c=0
adding these three equations we have,
(23 + 23+ 233+ a(zy? + 2,2 + 232) +b(z; + 2z, + z3) +3c=0 M1
(Alternatively,
(zy + 2z, +23)% =
(213 + 253 + 233) + 3(21%2, + 2,%25 + 232, + 2,225 + 2,°2; + 23%2,) + 62,225

(212 + 2,2 + 238 (21 + 25 + 23) = (203 + 233 + 233) + (2122, + 2,225 + 23% 2 + 21223 + 2,%2, +

23222) )

2_
2% g +3c=0 M1

50 S3 = 518, + 2

Thus 6¢ = (35,5, — S;° — 2S3) A1* (6)



(iii) Let z, = r(cos O +isinfy) for k =1,2,3 M1

Then z;? = 1 2(cos 20, + isin26,) and z,3 = 1. 3(cos 36y + isin36;) by de Moivre

As

andso S;, S, ,and S5 arereal,

and thereforesoare a, b, and ¢

3

Erksinek =0

k=1
3

2 T2 sin 26, =0

k=1
3

Z 1.3sin36, =0

k=1

Al

M1

Hence, as z;, z,,and zz are the roots of z3+az?+bz+c=0 with a,b,and c real, by part

(i), at least one of z; , z, , and z3 is real.
So for at least one value of k, 1, (cos 6y,

andas —w <0, <m, 6 =0 asrequir

M1
+ isin 6y ) isreal and thus, sin@, =0,

ed. A1(6)

If 6; =0 then z; isreal. z, and zz aretherootsof (z—2,)(z—23) =0

whichis z2 + (—z, — 23)z+ 2,23 = 0 (say z2 +pz+q=10)

p=-—2Z,—2zZz3=a+2z; and q = 2,73

roots has real coefficients. Thus z,, z3; =

If p2—4q <0,

1
—ptVp?-4q
2

M1

Thus cosf, =cosf;,andso 0, = +03,as—n <0, <m.

But sinf, = —sinf; andso 8, = —05.

M1 A1l

- Zi and so the quadratic of which z, and z; are the

. (z; # 0 because 1, > 0) B1

If p2 —4q = 0,then z, and z; are real roots, so sin@, = sinf; = 0, and thus 8, = 0; =0, so

92 = _93.

B1 (5)






5. (i) Having assumed that V2 is rational (step 1), V2 = p/q , where p,q € Z,q # 0 Bl

Thus from the definition of S (step 2), as ¢ € Zand V2 = q X P/q =p € Z,s0q € S proving step 3.
B1(2)

If k €S,thenk isaninteger and k2 is an integer.  B1

So (\/E - 1)k =kvV2 —kisan integer, B1

and (\/i - 1)k\/§ = 2k — k+/2 which is an integer and so (\/f - 1)k € S proving step 5. B1(3)
1<+v2 <2 andso M1

0<vV2-1<1,andthus0< (V2 —1)k <k Al

and thus this contradicts step 4 that k is the smallest positive integer in S as (\/E - 1)k has been
shown to be a smaller positive integer andisin S . A1l (3)

(i) If 2°/3 is rational, then 2%/3 = p/q , Where p,q €Z,q # 0

2 2 2 2
So (22/3) = (p/q) , thatiis 23 =P /q2 , Which can be written 2 X 23 =P /qz M1

2
and hence 2'/3 =P /Zqz proving that 2'/3 is rational. A1
If 273 is rational, then 2'3 = p/q ,where p,g €Z,q+0 M1

2
and so 22/3 =b /q2 proving that 22/3 is rational and that 21/3 is rational only if 22/3 is rational.
Al (4)

Assume that 21/3 is rational.

Define the set T to be the set of positive integers with the following property: nisin T if and only if

n2'/3 and n22/3 are integers. B1

The set T contains at least one positive integer as if 21/3 = p/q , Where p,q €Z,q # 0, then
2

q221/3 = q? xp/q =pq €Z and q222/3 = q? xp/qz =p?€Z,s0q?’€T. M1A1

Define t to be the smallest positive integerin T. Then t21/3 and t22/3 are integers. Bl

Consider t (22/3 - 1). t (22/3 - 1) = t2°/3 — t which is the difference of two integers and so is

itself an integer. t (22/3 - 1) X 21/3 =2t — t21/3 which is an integer,

and t (22/3 — 1) x 2°/3 = 2%3t — t2%/3 = 2 x 2'/3t — £2°/3 which is an integer.



Thus t (22/3 — 1) isinT. M1A1

1< 22/3 <2 andso 0 < 22/3 —1<1,andthus0 <t (22/3 — 1) < t, and thus this contradicts

2
that t is the smallest positive integerin T as t (2 /3 — 1) has been shown to be a smaller positive

integerandisinT . M1A1 (8)



6. () wzeR=>>uveR B1
For w,z € R, werequiretosolve w+z=u,w?+z>=v M1
wi+u-w)=v

2w? —2uw+ (w2 -v) =0

2ut+Vau? —8u? +8v u++V2v—u?
w = =
4 2

u+V2v—u?
2

Z =

M1A1

Sofor,z € R,asu = w + z must be real, v = w? + z2 must be real, and 2v —u? >0

ie. u? <2v B1* (5)
iu=w+z =u=w z wz soif w zZ°—u =—E,then —2wz=—E
so 3wz =1 M1A1

w3+ z23 =W+ 2)(W?+ 22 —wz) =u@? —-3wz) =u@w?-1)

M1A1
Thusif w3+z3—Au=-21, u@?-1)=A2u-1) M1A1
Thus (u—1Dw(u+1)—-1) =0, M1
wu-1DWw?+u-1)=0 M1A1
—1+V1+42

Thus u=1 or u = 5

Soas AR and A > 0 , the values of u are real. B1

There are three distinct values of u unless %M =1 inwhichcase +vV1+441=3,ie. A =2
M1A1 (12)

For w,z € R , from (i) we require u € R whichitis, u? —g € R whichitis, and u? < 2 (uz - g)

in other words u? > g. M1
So w and z need not be real. A counterexample wouldbe u =1 Bl

forthen w+2z =1, w? + z2 =§,so w? +(1-—w)? =§, ie. 2w2—2w+§=0inwhichcase

the discriminant is —% <0sowegR. B1 (3)



7. D2x% = D(D(x*)) =D (x;—x(xa)) = D(xax®1) M1

= D(ax%) = x%(ax“) = xa’x% 1 = q?x? M1A1 (3)
(i) Suppose D¥P(x) is a polynomial of degree 7 i.e. D¥P(x) = a,x” + a,_1x"" 1 + -+ aq
for some integer k . B1

Then D**1P(x) = D(a,x" + a,_1x" 1+ +ay) = x%(arxr + a1 x4+ ag)
=x(ra,x" '+ (r—Da,_x" %+ +a) =rax" + @ —Da,_1x" 4+ -+ agx
which is a polynomial of degree r . M1A1

Suppose P(x) = b.x" + b_1x""1 + -+ b, , then

DP(x) = x%(brxr + b1 x" "1+ -+ by) = b x” + (r — D)b_1x""1 + -+ byx so the result
istrueforn=1, M1A1

and we have shown that if it is true for n = k , itis true for n = k + 1. Hence by induction, it is
true for any positive integer . B1 (6)

(ii) Suppose D*(1 — x)™ is divisible by (1 — x)™ % i.e. D¥(1 —x)™ = f(x)(1 — x)™ ¥ for
some integer k , withk <m — 1. B1

Then DK*1(1— )™ = D(f(x)(1 — x)™ k) = x = (F)(1 — x)™)

= x(f'P1 =)™ * = (m—k)f )1 —x)™ 1)

= x(1 - )" (f'O(1 - x) — m— k)f (x)) which s divisible by (1 —x)™~(+D. M1A1
D(1—x)™ = x=-((1—x)™) = —mx(1 - x)™* soresultis true forn = 1. M1A1

We have shown that if it is true for n = k, itis true for n = k + 1. Hence by induction, it is true
for any positive integer < m. B1(6)

(iii)
@ -0m =310 (T) (=0 = g7 (7)) ma

So
p(1 =)™ =X o (-1 () D = Ty o (- )7 () M1A1

But by (ii), D™(1 — x)™ is divisible by (1 —x)™™ ™ andso D™"(1 —x)™ = g(x)(1 —x)™™™, and
thusif x =1, D™(1—x)™ =0, and hence

o7 (T =0 M1AL* (5)



) ox= W _ging 49T

8. (i) x=rcosb == rsm9+d9cost9 M1A1

dy=rsing =>2= 0 +ZLsing M1A1
and y = rsin <5 = T C0s -5 Sin

dar .
T CcOoS 9+Esm [’}

Thus (y+x)3—z=y—x becomes (rsinf + rcos @) =rsinf —rcos6

. dr
—rsin 6+@ cos @

Thatis (sin 8 + cos9) (r cos b + Z—;sin 9) = (sin8 — cos 9) (—r sin 6 +Z—;cos 9)
asr>0, r+0

Multiplying out and collecting like terms gives

dr
r(cos? 8 + sin? ) + E(sin2 0+ cos?6) =0

whichis 7 +2=10 . M1A1* (7)
6, 9r 6 _

So re +dee 0 [\

and thus re? =k , Al

r=ke? Al

- .
\J

G1(4)

(or alternatively f%dr = [—df M1so In|r| = —6 +c Alandhencer = ke™? A1)

(i) (y+x—x(?+y2) 2=y —x—y&?+y?)

dr .
T Ccos 9+ﬁsm %]

. dr
—rsin 9+E cos 6

becomes (rsin@ +rcos@ —r3 cos8) =rsinf —rcos@ —r3sinf

that is

("

(sin@ + cos 8 — r? cos 6) (rcose +Z—;sin6) = (sin@ — cos O — r? sin 6) (—rsinH +Z—;cost9)



Multiplying out and collecting like terms gives
r(cos? 0 + sin? @ — r2(cos? 6 + sin? §)) + %(sin2 6+ cos260) =0 M1

which is r—r3+Z—;=0. Al

[—=—dr=[do

r3—r

1 1 1
) dr = f—r(rz—l) dr = f—r(r—l)(r+1) dr = [d@ M1

r3—r

1/2 -1 1/2
So [df=["2+—+—"2dr Al
r—1 T r+1
1 (r-1)(r+1)
0+k= Eln —Z| Al
So
r2—1
— .26
2 =Ce
with C >0
1
2 =
T T 1T Ce?0
that is
rz ; A1*

T 1+4e20

j A ‘j A

N

ER

A<« © A=0

G1G1G1(9)




9. If the initial position of P is , then at time t , OP? = a? + x?, so conserving energy,

%mv2 = lma‘cz +i(\/a2 + x2 — a)z

2 2a
M1Al1Al
Thus,
A 2
x? =v? ——(\/az + x2% — a)
ma
M1
i.e.
2
x? =v? —k? (\/a2 + x2 —a)
Al* (5)
The greatest value, x, , attained by x , occurs when x = 0. M1

Thus v2 = kz(w/a2 + x9% — a)2

So Ja?+xy2—a= % (negative root discounted as all quantities are positive)

Thus
v 2 v?¢ 2av
2 _ (2 2= o
Xo© = (k-+-a) a 2 X
and
M1 A1 (3)
As

x? =v? —k? (\/az + x2 —a)2

differentiating with respectto t

1 -1
2xx% = —2k? (\/ a? + x% — a) > (a? + x2) 2 2xx
M1 A1l

Thus
(\/a2 + x2 — a)
= —xk?
va? + x2

P

Al



So when x = x,, the acceleration of P is

v v
X v2 2av % kvVv2 + 2akv
+

_xokz =— |—=+ kZ

v k2 k v v+ ak
& +a & a
M1 A1 (5)
5 1
X = [vz —kz(\/a2+x2 —a) ]
That is
1
dx 212
B[ - (Vv —a)]
dt
and thus
T/4 X0 1
f dt = I dx
-
o0 [V r i —a)
where T is the period. M1 A1
So
Xo
1
T=4 Tdx
-
0 [vz - kz(\/a2 +x2 — a) ]2
4 1
T= ; f 1 dx
-
0 kz(\/a2+x2—a) 2
1- 2
Let
5 k(\/a2 + x2 — a)
u =
v
B1
then
vu? 2
a?+x% = <T + a)
and so

5 v? u* 4+ 2kavu?
X4 =
k2




as v K< ka

Thus

and so

as required.

u v u
X = \/Zkav—(l +—u2) ~ V2kav—

M1A1

M1 A1* (7)



10. The position vector of the upper particle is

(x+asin9>
y+acosf

B1B1

so differentiating with respect to time, its velocity is

<x + aBcos 9)
y — a @sin 6
E1* (3)

Its acceleration, by differentiating with respect to time, is thus

(5c' + aBcos @ — ab? sin 9)
y —aBsinf — ab? cos
M1 A1 A1l

so by Newton’s second law resolving horizontally and vertically

( —Tsin@ ): (5&+aécos€—aézsin6)
~T cos @ —mg j —aBsinf — ah?cos @
M1A1

That is

m(ﬁc‘+aécos€—aézsin9> _ _T(sine)_m (0)
j —aBsin® — ah? cos O g

cos 6 1

The other particle’s equation is

(56 — aBcos B + ab?sin 0) _ (sin 9) —myg (0)

m y + a 8sin 6 + ab? cos 6 cos 6 1
B1 (6)
Adding these two equations we find
X\ _ 0
am (y) =—2mg ()
ie. X=0and y =—g M1 A1*

Thus
o - .
m( aue.cost9+q9 sm@):T(smG)
a Bsin 0 + af? cos 6 cos 6

i.e. m(—a0Bcos6 +ab?sinf) =Tsind and m(absin@ + ad? cos@) = T cos

Multiplying the second of these by sin 8 and the first by cos 6 and subtracting,



mad =0 andso 6=0. M1A1* (4)

u

Thus 6 = a constant and as initially 200 =u, 6 = %a M1 A1l
Therefore the time to rotate by %n is given by 76 = %n ,S0T = %n = % = % Al

As y = —g andinitially y = v, attime ,y =v —gt,andso y = vt — %gtz + h asthe centre of
the rod is initially h above the table. M1 A1l

Hence, given the condition that the particles hit the table simultaneously,
0 =vma/u—1/2 g(mra/u)?+h

Hence 0 = 2muva —m2a?g + 2hu?, or 2hu? = n%2a%g — 2muva asrequired. M1 A1* (7)



11. (i) Suppose that the force exerted by P on the rod has components X perpendicular to the rod
and Y parallel to the rod. Then taking moments for the rod about the hinge, Xd = 0, M1

which as d # 0 yields X = 0 and hence the force exerted on the rod by P is parallel to the rod.
Al* (2)

Resolving perpendicular to the rod for P, mgsina = m(r — d sina)w? cos a M1 A1l
. e ge 2 g _ .
Dividing by mw* sina, = (r —dsina) cota
Thatis a = rcota —dcosa orin other words rcota = a + d cosa as required. M1 A1* (4)

The force exerted by the hinge on the rod is along the rod towards P, B1
and if that force is F , then resolving vertically for P, Fcosa =mg M1A1

so F=mgseca. Al (4)

(ii) Suppose that the force exerted by m; on the rod has component X; perpendicular to the rod
towards the axis, that the force exerted by m, on the rod has component X, perpendicular to the
rod towards the axis, B1

then resolving perpendicular to the rod for m; , m;gsinf + X; = m;(r — d; sin B)w? cos 8
M1A1

and similarly for m, , m,gsinf + X, = m,(r — d, sin B)w? cos B

M1A1

Taking moments for the rod about the hinge, X;d; + X,d, =0 M1A1
So multiplying the first equation by d; , the second by d, and adding we have

my g dysin B +myd,gsin B = myd,(r — dy sin B)w? cos B + m,d,(r — d, sin B)w? cos B

2 2
Dividing by (m, d; +m,d,)w?sinf, % =rcotf — (M) cos 8 M1A1

mq dl +m, dz

2 2
Thatis rcotff =a+ bcosf,where b = mdy tmgdy Al (10)

mq dl +m, dz



12. (i) The probability distribution function of S is

S, 1 2 3 4 5 6
p 1/6 1/6 1/6 1/6 1/6 1/6
so the probability distribution function of R; is
R, 0 1 2 3 4 5
p 1/6 1/6 1/6 1/6 1/6 1/6
and thus G(x) = %(1+t+t2+t3+t4+t5). B1
The probability distribution function of S, is
S, 2 3 4 5 6 7 8 9 10 11 12
1 2 3 4 5 6 5 4 3 2 1
p /36 /36 /36 /36 /36 /36 /36 /36 /36 /36 /36
M1
so the probability distribution function of R, is
R, 0 1 2 3 4 5
6 6 6 6 6 6
P /36 /36 /36 /36 /36 /36

Al

which is the same as for R, and hence its probability generating function isalso G(x). Al*

Therefore, the probability generating function of R, is also G(x) B1
and thus the probability that S, is divisible by 6 is 1/6 . B1(6)
(ii) The probability distribution function of T is

T; 0 1 2 3 4

P Y6 */6 e e e




and thus G;(x) = i(l +2x +x% +x3 +x%) M1 A1

G,(x) would be (Gl(x))2 except that the powers must be multiplied congruent to modulus 5.
G,(x) = %(1+2x+x2 +x3 +x%) =§(x+1+x+x2 + x3 +x%) =%(x+y) Bl
Thus G,(x) would be 3—16(x + y)?

except xy =x(1+x+x?2+x3+xH)=x+x2+x3+x*+1=y M1A1

and Y2 =(1+x+x2+x3+xNA +x+x2+x3+x)=AQ+x+x?>+x3+xH +
c+x?2+x3+x* + D+ 2 +x3 +x* +1+0)+ 3 +x* +1+x+x)+ (P +1+x +
x% +x3) =5y Al

So G,(x) = %(x +y)% = %(x2 + 2xy + y?) = % (x2+2y+5y) = 3—16 (x2+7y) MI1A1* (8)

1 3 _ 1 2 1 3 2 2
G3(x) = g(x +y)° = g(x +y)(x*+7y) = g(x + yx*+ 7xy + 7y°)
That is
1 3 2 2 13 1 3
G3(x) =5(x +yx* + 7xy + 7y*) =§(x +y+ 7y +35y) =5(x + 43y)
We notice that the coefficient of y inside the bracketin G,(x)is (1 +6 + 62 +---6""1)

This can be shown simply by induction. It is true for n = 1 trivially.

Consider (x +)(x"+ (1+6+ 62+ +651)y)=x"" +yx" + (1+ 6+ 62 + - +65 V)xy +
(1+6+62+-+6k71)y2

yx"+ (1+6+6%+6KDxy+ (1+6+ 6%+ +6571)y?
=y+(1+6+62++65)y+5(1+6+6%+--+651)y

5(1464+6%+-651)=(6-1(1+6+6%+681)=6F—1
Soy+(1+6+62++651)y+5(1+6+62+-+651)y=(1+6+6%+-6")y
as required. M1

n_
However, this coefficient is the sum of a GP and so G, (x) = Gin (xn‘SP + 6—51y) where p isan

integer suchthat 0 <n—-5p <4. M1 A1

So if n is not divisible by 5, the probability that S,, is divisible by 5 will be the coefficient of x°

n_
which in turn is the coefficient of y , namely = (6 z 1) = %(1 - 6%) as required. B1*

6n

If n is divisible by 5, the probability that S, is divisible by 5 will be 6in(l + GnT_l) as x™oP = x0



. 1 4
Thatis (1 + G—n) M1A1 (6)



13. (i)

\.i A

N

KT ¢
G1

P(X+Y<t)=%t2ifOStS1 B1

\} A

N\

y S i-’-' (‘]:-l) =2-t

/

|/ // ,TV
'@-}Q\

) %

G1

andP(X+Y<t)=1—%(2—t)2 ifl<t<?2 B1

PX+Y<t)=0ift<0and PX+Y<t)=1ift>2

( 0 fort<0

22 foro<t<1
_ 2
SoF(t)—% )
|1_5(2_t)2 fori<t<2

1fort>2

B1 (5)

Thus P(X+V) <) =P(X+¥>)=1-P(X+V¥ <)

1_ﬁ for1<t
)1 1\2 1
= E(Z—?) for -<t<1
l 1
0fort<5
M1 Al

Soas f(t) :dl;—(tt),



1
0 t<-—
for >
1 1 1
f(t)=$t—2(2—?) for 3<t<1
1
t t—3f0r1§t

as required. M1A1* (4)

1

1 (o]
v = 23 -3¢ = “191 4 [ 1700
E () 1ft(Zt t )dt+ft.t dt = [2Int+ ¢ + [~¢1]2

= 1 2
2

1

M1 A1 (2)

1
P(Y ) EtforOSt£1

1
1—515_1 fort>1

B1(2)

1/1 1
1—5(;—1) for S st=<1
1/1 -1 1
E(?_l) forOSt<E

F(t) =

1 1
S@—t™) forgst<1
F(t) =

1( t) O<t<1
2\1 -t for 0 =< 2



M1A1

dF (t)

Soas f(t) =

1, 1
—t fOT'EStSl

fO =4, "2 1
E(1—1:)‘2 forOSt<§
M1A1 (4)
E (ﬁ) = % because, by symmetry, E (Xxj) =E (ﬁ)
and £ (7i7) +E (5iy) = E (o) = ED =1 .

N[~

1

X 1 1
E(x+Y) fzt(l t) dt+ft><2t dt

0 1
2

as required. M1A1 (3)



